Computing exp ( − τA ) b by the Filtered Conjugate Residual Algorithm ∗

نویسندگان

  • Bernard N. Sheehan
  • Yousef Saad
چکیده

This paper discusses a class of Filtered Conjugate Residual Algorithms (FCR) as a way to compute the product of the exponential of a matrix by an arbitrary vector. These methods utilize implicitly expansions of the exponential function in a basis of orthogonal polynomials. FCR methods based on Laguerre, Hermite, and Chebyshev polynomials, are described and their performances are compared. The paper discusses how scaling and staging can affect convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMPUTING exp(−τA)b WITH LAGUERRE POLYNOMIALS

Abstract. This paper discusses a method based on Laguerre polynomials combined with a Filtered Conjugate Residual (FCR) framework to compute the product of the exponential of a matrix by a vector. The method implicitly uses an expansion of the exponential function in a series of orthogonal Laguerre polynomials, much like existing methods based on Chebyshev polynomials do. Owing to the fact that...

متن کامل

GGMRES: A GMRES--type algorithm for solving singular linear equations with index one

In this paper, an algorithm based on the Drazin generalized conjugate residual (DGMRES) algorithm is proposed for computing the group-inverse solution of singular linear equations with index one. Numerical experiments show that the resulting group-inverse solution is reasonably accurate and its computation time is significantly less than that of group-inverse solution obtained by the DGMRES alg...

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm

Scalability of Krylov subspace methods suffers from costly global synchronization steps that arise in dot-products and norm calculations on parallel machines. In this work, a modified Conjugate Gradient (CG) method is presented that removes the costly global synchronization steps from the standard CG algorithm by only performing a single non-blocking reduction per iteration. This global communi...

متن کامل

A Note on the Descent Property Theorem for the Hybrid Conjugate Gradient Algorithm CCOMB Proposed by Andrei

In [1] (Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization J. Optimization. Theory Appl. 141 (2009) 249 - 264), an efficient hybrid conjugate gradient algorithm, the CCOMB algorithm is proposed for solving unconstrained optimization problems. However, the proof of Theorem 2.1 in [1] is incorrect due to an erroneous inequality which used to indicate the descent property for the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006